[CONTRIBUTION FROM THE SCIENTIFIC LABORATORIES, FREDERICE STEARNS AND COMPANY DIVISION OF STERLING DRUG,

Inc.]

Alkamine Esters of Substituted p-Xenylglycolic Acids¹

By John A. Faust, R. F. Feldkamp and Maurice L. Moore

A series of alkamine esters of substituted pxenylacetic acids has been prepared by Blicke and Grier^{1a} and found to possess antispasmodic activity.^{1a,2} Subsequent investigation of a series of alkamine esters of substituted α -thienylacetic acids³ has shown that, in general, the spasmolytic activity of the esters of hydroxyacetic acids (glycolates) is much greater than that of the esters of acetic acids.^{3,4} Since the observed activity of some of the esters of alkyl-p-xenylacetic acids is relatively high, in comparison with known antispasmodic agents, the present work was concerned with the synthesis of a series of related esters of substituted p-xenylglycolic acids for pharmacological investigation.

The necessary substituted p-xenylglycolic acids have been prepared previously by the reaction of the appropriate Grignard reagent on p-xenylglyoxylic acid.^{1a} These acids were dissolved in isopropanol and heated with a molecular equivalent of the desired basic alkyl chloride for the line quaternary salts The properties of these compounds are summarized in Table I.

The β -diethylaminoethyl ester hydrochlorides of the propyl- and butyl-p-xenylglycolic acids were found to have nearly identical melting points and there was no depression in the melting point of a mixture of the two compounds. This was also true of the β -N-piperidinoethyl ester hydrochlorides of the same acids. In checking these results new acids were prepared and esterified with the appropriate basic alkyl chloride to yield new samples of the four esters. The properties of three of the new samples coincided with those of the first. However, the β -diethylaminoethyl ester hydrochloride of butyl-p-xenylglycolic acid had a much lower melting point than that of the initial material, although the analytical data on both were acceptable. The melting point of a mixture of the two was the same as that of the higher melting form and both yielded the same acid upon saponification.

Antispasmodia activity

TABLE I									
Alkamine Esters of Substituted p-Xenylglycolic Acids									
p-C6H6C6H4CR'OHCOOR·HCI									

			37:-14	Х, s		Analyses, % ^a Nitrogen Chlorine				Antispasmodic activity ^o average max. effective dilution on isolated rabbit jejunum Acetvl- Barium		
No.	R	R'	Yield, %	M. p., °C."	Formula		Found	Calcd.		Acetyl- choline	chlorine	
1	$-CH_2CH_2N(C_2H_5)_2$	CH:	82	160-161	C21H28O3NC1	3.71	3.78	9.39	9.66	1 M °	200-500T ^d	
2		C ₂ H ₅	84	157-158	C22H30O3NC1	3.57	3.68	9.05	9.33	100-200T	100-200T	
3		C ₃ H7	55	137-139	C28H22O3NC1	3.45	3.37	8.73	8.81	100-200T	100-200T	
4		C ₄ H ₉ I	61	135-137	C24H24O3NC1	3.34	3.28	8.44	8.63	100-200T	100-200T	
		II	67	119-120			3.36		8.51	100-200T	100-200T	
5	$-CH_2CH_2CH_2N(C_2H_5)_2$.CH3	87 [/]	115-117	C22H20O2NC1	3.57	3.55	9.06	9.03	500T - 1M	200 1	
6		C₂H₅	62	122 - 123	C23H22O3NC1	3.45	3.38	8.74	8.74	200-500T	200-500T	
7		C ₃ H ₇ ^g	31	126-128	C25H36O3NBr	2.93	3.18	16.70	16.81	200 - 500 T	200-500T	
8		C ₄ H ₉ ^g	57	155-156	C26H38O3NBr	2.84	3.00	16.23	16.39	500 T - 1 M	200-500T	
9	-CH2CH2NC5H10 ^h	CH3	92 [/]	207 - 208	C22H28O3NC1	3.59	3.79	9.09	9.46	500T-1M	200-5001	
10		C₂H₅	70	146-147	$C_{22}H_{20}O_3NC^{1}$	3.47	3.62	8.78	8.69	100-200'r	100-200T	
11		CaH7	64	183-184	C24H32O3NC1	3.35	3.37	8.48	8.43	100-200T	100-200T	
12		C4H9	73	181 - 182	C25H31O3NC1	3 24	3.24	8.21	8.22	100-200T	100-200T	
-							-					

^a We are indebted to Mary Jane Eastwood and Elizabeth B. Macks for the analytical data on these compounds. ^b The figures recorded represent preliminary results only but they are sufficiently accurate to permit a relative comparison of the compounds. ^c 1:1,000,000. ^d 1:200,000-500,000. ^c All the melting points reported are uncorrected. ^f Crude yields. ^e Methobromides. ^b NC₅H₁₀ = Piperidino. Compound no. 6 was recrystallized from benzene, compound 9 from methanol, compounds 1 and 12 from isopropanol, and 5 from a mixture of methanol and isopropyl ether.

preparation of the esters, according to the general method of Horenstein and Pählicke.⁵ The hydrochloride salts of two of the esters could not be isolated in crystalline form. These were converted to methobromides and isolated as crystal-

(1) Prepared for the 1945 meeting-in-print of the Division of Medicinal Chemistry, A. C. S.

- (2) Lewis, Lands and Geiter, Federation Proc., 2, 29, 86 (1943).
- (3) Blicke and Tsao, THIS JOURNAL, 66, 1645 (1944).

(4) Lands and Nash, Proc. Soc. Exptl. Biol. Med., 57, 55 (1944).

(5) Horenstein and Pählicke, Ber., 71, 1654 (1938).

We are indebted to Dr. A. M. Lands and Miss V. L. Nash, of the Pharmacological Research Laooratories, for a preliminary report on the antispasmodic activity of these compounds as included in Table I. In general, the spasmolytic activity is about the same as for the corresponding esters in the *p*-xenylacetic acid series. The esters of methyl-*p*-xenylglycolic acid are the most active in the series, with β -diethylaminoethyl methyl-*p*-xenylglycolate having an activity against acetylcholine on the isolated rabbit

⁽¹a) Blicke and Grier, THIS JOURNAL, 66, 1725 (1943).

jejunum in a dilution of 1:1,000,000. It was surprising to note that the esters of glycolic acids were of the same order of activity as the esters of the corresponding acetic acids.

Experimental

Basic Esters. (a) Hydrochlorides.—A homogeneous solution of equimolecular quantities of the glycolic acid and the basic alkyl chloride in an appropriate volume (50 ml. per 0.03 mole) of isopropanol was refluxed for fifteen hours. After filtration the solvent was removed by evaporation at room temperature with a current of air and the oily residue became crystalline, in most cases, after being repeatedly rubbed with fresh portions of anhydrous ether. The product was recrystallized from a suitable solvent as indicated in the table.

(b) Methobromides.—Hydrochlorides which persisted as oils were converted to methobromides according to the procedure of Blicke and Maxwell.⁶ A cold aqueous solution of the hydrochloride was made alkaline with 10% aqueous sodium carbonate and the liberated basic ester extracted with ether. After washing with water, the extract

(6) Blicke and Maxwell, THIS JOURNAL, 64, 428 (1942).

was dried over anhydrous magnesium sulfate. The magnesium sulfate was filtered off and the ether evaporated leaving an oil which was dissolved in ethanol. This solution, contained in a citrate bottle, was cooled in an ice-salt mixture and treated with four to six equivalents of methyl bromide. The bottle was stoppered and allowed to stand at room temperature for twenty-four hours after which the product was worked up in the manner described for the hydrochlorides.

Summary

Twelve alkamine esters of substituted *p*-xenylglycolic acids were prepared by the reaction of a molecular equivalent of the appropriate acid and basic alkyl chloride. The properties of these compounds are described. The anomalous data on certain of these derivatives are discussed.

All of the esters possess antispasmodic activity, although it was surprising to find that they were of the same order of activity as the esters of the corresponding acetic acids.

DETROIT, MICH.

RECEIVED AUGUST 20, 1945

[CONTRIBUTION FROM THE SCIENTIFIC LABORATORIES, FREDERICK STEARNS AND COMPANY DIVISION OF STERLING DRUG, INC.]

Alkamine Esters of Substituted 1-Naphthaleneglycolic Acids¹

By R. F. Feldkamp and Maurice L. Moore

In view of the observations noted in the preceding article of this series, ^{1a} it was of interest to synthesize a series of alkamine esters of substituted 1-naphthaleneglycolic acids for pharmacological investigation in comparison with the previously prepared esters of substituted 1-naphthaleneacetic acids,² several of which have been reported to possess relatively high antispasmodic activity. The substituted 1-naphthaleneglycolic acids were prepared according to the method already described by the reaction of the appropriate Grignard reagent on 1-naphthaleneglyoxylic acid.² Whereas a large excess (50%) of Grignard reagent was previously employed in this synthesis it was found that a small excess (10%) gave a granular solid complex and yields of 78-88%. Two of

ALKAMINE ESTERS OF SUBSTITUTED 1-NAPHTHALENEGLYCOLIC ACIDS, 1-C10H7CR'OHCOOR+HCI

No.	R	R'	Yield, %	М. р., °С.	Formula	Niti	Analy cogen Found	ses, % ^a - Chlo Calcd.	rine Found	Antispasmoo av. max. eff on isolated ra Acetyl- choline	ective diln.
1	-CH1CH1N(C1H1)1	CH:	87	139-141	C10H16O1NC1	3.98	3.95	10.07	10.25	2 M °	500T ^đ
2	-CH2CH2N(C2H2)2	C ₂ H ₅	90	147-148	C20H28O2NC1	3.83	3.84	9.69	9.82	500T-1M	20 0 500T
3	-CH2CH2N(C2H5)2	C ₁ H ₇	95	153-155	C11Ha0OaNC1	3.69	3.83	9.33	9.55	500T-1M	250 - 500 T
4	-CH2CH2N(C2H2)2	C ₄ H ₉	82	133-135	C11H12O1NC1	3.56	3.58	9,00	9.35	500T-1M	250-500T
5	-CHICHICHIN(CIHI)I	CH:	74	134 - 135	CnHmO3NBr ^e	3.30	3.49	18.83	18.73	2 00-5 00Т	100-200T
6	-CH2CH2CH2N(C2H5)2	C2H3	89	138-140	C21H2003NC1	3.69	3.78	9.33	9.33	2505 00T	250500'T
7	-CH2CH2CH2N(C2H2)2	C ₈ H ₇	83	153-154	CnHnO1NC1	3.56	3.52	9.00	9.00	25 0 500'Г	100-2007
8	-CH3CH3CH3N(C3H3)3	C4H9	77	123 - 125	C21HHO1NC1	3,43	3.46	8.69	8.58	100-200T	200T
9	$-CH_{2}CH_{2}CH_{2}N(C_{2}H_{3})_{2}$	CaHa	93	163-165	CHH#O1NC1	3.27	3.24	8.29	8.33	500T-1M	200-500T
10	-CH2CH2NC4H10	CH:	74	148-149	CuHnOiNBr"	3.32	3.31	18.92	18.69	500 T-1M	250-500T,
11	-CH2CH2NC4H10	C ₂ H ₁	50	164-166	CnHuO3NC1	3.71	3.63	9.38	9.38	20 0500T	10 0- 200T,
12	-CHICHINCIH10	C ₁ H ₇	81	143-145	CnH1001NC1	3.57	3.77	9.05	8.85	100-200T,	100T
13	-CH2CH2NC5H10	C ₄ H ₈	89	128-130	C ₂₁ H ₂₂ O ₈ NC1	3.45	3.52	8.74	8.32	100200T	10 0 200T,

^a We are indebted to Mary Jane Eastwood and Elizabeth B. Macks for the analytical data on these compounds. ^b The figures recorded represent preliminary results only but they are sufficiently accurate to permit a relative comparison of the compounds. ^c 1:2,000,000. ^d 1:500,000. ^e Methobromides. ^f NC₅H₁₀ = Piperidino. Compounds 1, 2, 3, 4, 5, 6, 10 and 11 were recrystallized from isopropanol and isopropyl ether, compounds 7, 8, 9 and 12 from isopropanol and ethyl ether, and compound 13 from isopropanol.

these acids have not been reported and are noted in the Experimental Part. The desired esters were prepared by the method of Horenstein and

⁽¹⁾ Prepared for the 1945 meeting-in-print of the Division of Medicinal Chemistry, A. C. S.

⁽¹a) See THIS JOURNAL, 67, 1897 (1945).

⁽²⁾ Blicke and Feldkamp, ibid., 56, 1087 (1944).